Risk-Aware Information Retrieval
نویسندگان
چکیده
Probabilistic retrieval models usually rank documents based on a scalar quantity. However, such models lack any estimate for the uncertainty associated with a document’s rank. Further, such models seldom have an explicit utility (or cost) that is optimized when ranking documents. To address these issues, we take a Bayesian perspective that explicitly considers the uncertainty associated with the estimation of the probability of relevance, and propose an asymmetric cost function for document ranking. Our cost function has the advantage of adjusting the risk in document retrieval via a single parameter for any probabilistic retrieval model. We use the logit model to transform the document posterior distribution with probability space [0,1] into a normal distribution with variable space (−∞,+∞). We apply our risk adjustment approach to a language modelling framework for risk adjustable document ranking. Our experimental results show that our risk-aware model can significantly improve the performance of language models, both with and without background smoothing. When our method is applied to a language model without background smoothing, it can perform as well as the Dirichlet smoothing approach.
منابع مشابه
Prototyping a Vibrato-Aware Query-By-Humming (QBH) Music Information Retrieval System for Mobile Communication Devices: Case of Chromatic Harmonica
Background and Aim: The current research aims at prototyping query-by-humming music information retrieval systems for smart phones. Methods: This multi-method research follows simulation technique from mixed models of the operations research methodology, and the documentary research method, simultaneously. Two chromatic harmonica albums comprised the research population. To achieve the purpose ...
متن کاملAn Effective Path-aware Approach for Keyword Search over Data Graphs
Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملTowards Risk-Aware Resource Selection
When searching multiple sources of information it is crucial to select only relevant sources for a given query, thus filtering out nonrelevant content. This task is known as resource selection and is used in many areas of information retrieval such as federated and aggregated search, blog distillation, etc. Resource selection often operates with limited and incomplete data and, therefore, is as...
متن کاملContext-Aware Querying in Multimedia Databases – A Futuristic Approach
Efficient retrieval of multimedia objects has gained enormous focus in recent years. A number of techniques have been suggested for retrieval of textual information; however, relatively little has been suggested for efficient retrieval of multimedia objects. In this paper we have proposed a generic architecture for contextaware retrieval of multimedia objects. The proposed framework combines th...
متن کامل